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Topological Electric Charge 
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By treating magnetic charge as a gauge symmetry through the introduction of a 
"magnetic" pseudo four-vector potential, we show that it is possible to construct 
a topological electric charge from a theory which originally contains gauge 
magnetic charge. This is an explicit realization of the Montonen-Olive conjecture 
that there should exist a dual theory to the usual 't Hooft-Polyakov monopole 
theory in which the roles of the gauge and topological charges are reversed. The 
physical distinction between 't Hooft-Polyakov monopoles and the dual theory 
with electric charge is that the strong and weak coupling regimes are reversed. 
Physically this leads to the mass of the electrically charged soliton being on the 
order of (1/137)Mw as opposed to the much larger mass (on the order of 137Mw) 
of the magnetically charged soliton. Thus even for Mw in the TeV range such an 
electrically charged particle could be observed at some future accelerator. 

1. I N T R O D U C T I O N  

Several  years ago ' t  Hoof t  (1974) and Po lyakov  (1974) showed how to 
construct  a magnet ical ly  charged object  starting f rom a theory with a non- 
Abelian gauge field coupled to a Higgs  field. The  gauge coupling of  the non- 
Abel ian theory was set equal to the e lectromagnet ic  coupling constant  e, so 
that one could identify the U(1) symmet ry  which remained after spontaneous 
symmet ry  breaking (SSB) with the usual e lectromagnet ic  gauge symmetry .  
A magnet ica l ly  charged object  was then generated by giving the scalar field 
an unusual topological  vacuum structure at spatial infinity. This strange 
vacuum configurat ion was called the "hedgehog"  solution by Po lyakov  since 
the direction in isospin space in which the vacuum expectat ion value (VEV) 
points is l inked to the radial direction of  ordinary space. This magnet ic  
soliton, which emerges  f rom a theory which originally has only electric gauge  
charge, has several  unique properties.  First, its magnet ic  charge is not a 
Noether  charge, but a topological  charge,  which owes its existence to the 
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unusual vacuum of the scalar field (Arafune et al., 1975). Second, the mono- 
pole has no singularities in its fields. Finally, and unfortunately, it is estimated 
to have a mass on the order of 137Mw (where Mw is the mass of the gauge 
bosons after symmetry breaking). If Mw is on the order of the electroweak 
gauge bosons ( -100 GeV), then seeing such magnetically charged objects 
is out of the question for any current or planned accelerator. The monopole's 
large mass comes about because of the small value of the non-Abelian gauge 
coupling that one must choose in order that the embedded U(1) symmetry 
can be identified with the usual Abelian gauge group of electromagnetism. 
This also leads to the monopole having a large magnetic charge of 47r/e. 

It might be asked if it is possible to construct such topologically stable 
solitons which have the far field of an electric charge. Julia and Zee (1975) 
found field configurations which carry both magnetic and electric charge, 
which are called dyons. However, for the dyon, the electric charge cannot 
exist without an accompanying magnetic charge, and the stability arguments 
that apply to the purely magnetic solution do not apply to the dyonic solution 
(although there are plausibility arguments for its stability). Purely electrically 
charged solitons, with a "small" mass, would be of interest phenomenologi- 
cally, since one might be able to identify such objects with observed or 
observable particles. Such electrically charged solitons would not suffer from 
the singularity of the Coulomb field at the origin, which is found in classical 
point particles such as the electron. Rather, the Coulomb potential would 
evolve smoothly into a non-Coulomb, nonsingular field at the origin. Addi- 
tionally, since we will find that the mass of these electric solitons is 
~(1/137)Mw, they would be found before the massive gauge bosons and so 
would provide a window on the non-Abelian gauge group. This is the opposite 
to 't Hooft-Polyakov monopoles, which have a larger mass than the massive 
gauge bosons of the theory. 

The reason for thinking that electric solitons are possible is the dual 
symmetry (Jackson, 1975) between electric and magnetic quantities of Max- 
well's equations 

E - - - ) c o s 0 E +  s i n 0 B  

B ---) - s in  0 E + cos 0 B (1) 

and 

Pe ~ COS 0 Pe + sin 0 p,,, Je ----) cos 0 Je + sin 0 Jm 

Pm --'-) --sin 0 Pe + cos 0 P,,, Jm --~ -s in  0 Je + cos 0 J,, (2) 

where Pe(rn) and Je(m) are the electric (magnetic) charge and current densities. 
Given a particle with a certain electric and magnetic charge, it is possible to 
use this dual symmetry to "rotate" the two charges so that the particle ends 
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up with a different electric and magnetic charge. By properly choosing the 
angle 0, a particle can be made to carry only electric charge or only magnetic 
charge. The ability to altogether transform away one type of charge holds 
only if all particles have the same ratio of electric to magnetic charge, since 
the dual transformation of equation (2) is global. 

Using the dual symmetry between electric and magnetic quantities, it 
should be possible to find a topological electric soliton by applying a duality 
transformation on the magnetic soliton. This possibility was conjectured to 
occur some time ago by Montonen and Olive (1977). Based on the dual 
symmetry between electric and magnetic quantities given above, they argued 
that there should exist a theory which was dual to that of 't Hooft and 
Polyakov, such that instead of starting with an electric gauge charge and 
ending up with a topological magnetic charge, one could start with a magnetic 
gauge charge and end up with a topological electric charge. In addition to 
switching the roles of the electric and magnetic quantities in the theory, this 
would change the strong- and weak-coupling regimes. In the case of the 
magnetic soliton one begins with a small electric charge and ends up with 
an enormous magnetic charge. For the electric soliton one expects the initial 
gauge charge to be large, while the final electric charge is small. We shall 
see that this does happen, with the physical consequence that the mass of 
the electric soliton is relatively small (i.e., small enough that it would be 
feasible to observe such an electrically charged object at some future 
accelerator). 

The main obstacle to carrying through the Montonen-Olive conjecture 
is that the 't Hooft-Polyakov construction occurs at the level of the gauge 
potentials. When E and B are written in terms of the four-vector potential 
A N ( E i  = OiA 0 - O~ i and B i  = -OJA ~ + OkAJ), it appears impossible to 
implement the dual symmetry of equation (1) in terms of the potentials. What 
is needed is a formulation of electromagnetism that is symmetric at the level 
of the gauge potentials. Various authors (Cabibbo and Ferrari, 1962; Rohrlich, 
1966; Zwanziger, 1971) have accomplished this by introducing a second, 
pseudo four-vector potential C~ in addition to the usual four-vector potential 
A N (the term pseudo for Cr refers to its behavior under parity). This two- 
potential approach has the advantage over the Dirac string approach (Dirac, 
1931; 1948) or the Wu-Yang fiber bundle approach (Wu and Yang, 1975) 
in that it requires neither a singular string variable nor a patching of the 
gauge potential. Using two potentials also puts magnetic charge on the same 
footing as electric charge by treating both as U(1) gauge symmetries (Carmeli, 
1982). The drawback of this approach is that there are two "photons" in the 
theory rather than the one photon that is observed (Hagen, 1965). This can 
be overcome in two ways: Either by putting extra conditions on the two 
gauge fields so that only the number of degrees of freedom necessary for 
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one photon is left (Zwanziger, 1971); or by accepting the other "photon," 
but hiding it and the magnetic charge associated with it through the Higgs 
mechanism (Singleton, 1995). 

The two-potential theory of electric and magnetic charge allows the dual 
symmetry of Maxwell's equations to be extended to the level of the gauge 
fields. Using this with the 't Hooft-Polyakov construction, one easily con- 
structs topologically stable electric poles rather than magnetic poles. The 
major difference between the magnetically charged soliton and the electrically 
charged soliton is in the enormous difference of their masses. We will first 
review the relevant aspects of the two-potential theory. 

2. THE DUAL FOUR-VECTOR POTENTIAL 

In three-vector notation, Maxwell's equations with electric and magnetic 
charge are (in Lorentz-Heaviside units) (Jackson, 1975) 

V ' E  = pe, V • B = 1 (0~t + J e )  - c 

Introducing two four-vector potentials A ~ = (~e, A) and C ~ = (q~m, C), we 
can write the E and B fields as 

10A 
E = - V ~ b  e V x C 

c Ot 

10C 
B = - V ( ~ )  m - - -  -~- V x A (4) 

c Ot 

The usual definitions of E and B only involve ~be and A. Substituting the 
above expanded definitions for E and B into Maxwell's equations (3) yields 
(after using some standard vector identities and applying the Lorentz gauge 
condition to both four-vector potentials) the wave equation form of Maxwell's 
equations for both A ~ and C ~. The equation for A~ has electric charges and 
currents [Je ~ ~ (Pe, Je)] as sources, while the equation for C ~ has magnetic 
charges and currents [J~ - -  (Pro, Jm)] as sources. In the two-potential theory 
all of Maxwell's equations are dynamical equations. 

The two four-vector potentials A ~ and C ~ are similar except for their 
behavior under parity transformations. The E field is an ordinary vector under 
parity, and the B field is a pseudovector. The normal definition of the fields 
in terms of the potentials implies that qbe must be a scalar and A must be a 
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vector under parity. In order for the E and B fields to retain their parity 
properties under the expanded definitions of equations (4), +m must be a 
pseudoscalar and C must be a pseudovector under parity. Therefore A ~ is a 
four-vector, while C ~ is a pseudo four-vector. 

The two-potential theory can be cast most simply in four-vector notation. 
We define the two field strength tensors (where c = 1 from now on) 

and their duals 

F ~  = O~A ~ - O,A~ 

G ~', = O~C ~ - O~CW (5) 

1 
~ = ~ e~'~F~t~ 

1 
~ v  = 2 ~v~'~G~,~ (6) 

where e ~ is the Levi-Civita tensor, with e ~ = + 1, and having total 
antisymmetry in its indices. The E and B fields can then be written as 

1 eiJkGj k g i  = F iO --  ~iO =_ FiO + -2 

1 eiJkFj k (7) B i =  G i~ + ~ i 0 =  G i O _ _ 2  

It is the q3 i~ part of the E field which is crucial, since it is this term which 
gives rise to the electric, Coulomb far-field of the soliton when the magnetic 
U(1) gauge symmetry is embedded into the non-Abelian theory via 't Hooft's 
generalized electromagnetic field strength tensor. This ~3 i~ term is absent in 
the usual formulation of  electromagnetism. Maxwell's equations in four- 
vector notation become 

O c F  ~v = 0r = j,~ 

O~G ~ = O~O~C ~ = J~m (8) 

where the Lorentz condition (O~A ~ = O~C ~ = 0) has been imposed on the 
two potentials in going from the first to the middle expression. Finally, the 
dual symmetry of equations (1), (2) can now be written in terms of  the two 
four-vector potentials and the two four-currents 

A ~ - - ~ c o s 0 A  ~ + s i n 0 C  ~, C ~ - - ) - s i n 0 A  ~ + c o s 0 C  t' 

J~ --~ cos 0 Je ~ + sin 0 Jm ~, J~m -") - s i n  0 Je ~ + cos 0 Jm ~ (9) 
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Equation (9) extends the dual symmetry of equation (1) to the level of the 
four-vector potentials. This implies that it should be possible to construct a 
topological electric charge in exactly the same way 't Hooft and Polyakov 
constructed a topological magnetic charge. The relevant parts of their solution 
are reviewed in the next section. 

3. THE 'T HOOFT-POLYAKOV MONOPOLE SOLUTION 

't Hooft (1974) and Polyakov (1974) independently discovered the possi- 
bility of constructing a finite-energy, magnetically charged soliton in a non- 
Abelian gauge theory coupled to a Higgs field. The stability of this field 
configuration was guaranteed by the nontrivial homotopy of the Higgs field 
(Arafune et  al.,  1975). 

In constructing the monopole solution 't Hooft considered an SO(3) 
gauge theory coupled to a triplet scalar field with the following Lagran- 
gian density: 

1 t4~ ready 1 1 ~2dpa~pa 1 Ss = - ~  ._wv_ + 2 Dwdi~aDgdpa q- 2 - -  -~ k((I)acI)a) 2 (10) 

where 

and 

Hr = O~W a _ O~W~ + geabc Wl.zb WvC (11) 

D~dP a = O~dP" + abc b c ge W~dP (12) 

~.abc a r e  the structure constants of SO(3). The SO(3) gauge coupling g is at 
this point unspecified. If i ~2 > 0 and k > 0, then the scalar field develops 
a vacuum expectation value of v = Ix/,fh, reducing the SO(3) symmetry to 
a U(1) symmetry. Inserting the spherically symmetric ansatz 

W a = ~aijXJ[1 --  K(r)] 
gr2 , W~ = 0 

f~ja _ x~H(r)  
gr2 (13) 

into the equations of motion that come from the Lagrangian of equation (10), 
one arrives at two coupled differential equations for the functions K(r )  and 
H(r )  (Julia and Zee, 1975) 

r2K  " = K ( K  2 + H 2 - 1) 

h 
rZH " = 2 H K  z + ~ H ( H  2 - gZv2r2) (14) 
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where the primes indicate differentiation with respect to r. These equations 
must be solved numerically, except in the special case when Ix, ~ = 0 
(Prasad and Sommerfield, 1975), where an analytical solution can be found. 
In addition to the pure gauge solution to these equations [i.e., K(r) = 0 and 
H(r) = (gpdx/~)r], there exists a nontrivial finite-energy solution. That such 
a solution exists can best be seen by calculating the energy of the field 
configuration of equation (13), 

E = f T~176 d3x 

~f (1najna iJ -2Oi( I )ao i~ j ja -  ~ 

g2 ( K')2 + 2r 2 

- -  r 2 ~ dr + 4 g2r2 - v2 

1 ) ~L2~ja~) a --}- 4 h((I)a(I)a)2 d3x 

H2K 2 (rH' - H) 2 
+ - -7 - -  + 2r 2 

(15) 

where the constant term 41--hV 4 was added to the expression for the energy, so 
that the scalar potential term could be written as the square of some quantity. 
Thus every term in equation (15) is positive-definite. Then, since neither 
K(r) = 0 nor K(r) = 1 is the lowest minimum, the variational principle 
requires that an intermediate solution must exist. In the absence of a scalar 
field one finds that K(r) = 0 minimizes the energy. This is the Wu-Yang 
solution, which is singular at the origin. Thus the scalar field is crucial to 
obtaining a nonsingular, finite-energy solution. When ~2 and h are nonzero 
the solution must be found numerically, and then equation (15) becomes 

E = -gg Mwf  (16) 

where Mw = b~g/gCh is the mass of two of the SO(3) gauge bosons after 
symmetry breaking. The function f(X/g2), which must be evaluated numeri- 
cally, is ~(1). 

The Abelian U(I) symmetry, which remains after the SO(3) is spontane- 
ously broken, can be identified with the usual electromagnetic gauge symme- 
try by making the following gauge-invariant generalization of the Maxwell 
field strength tensor: 
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1 
Fw~ = OwA~- O~A~ g[~[3 ~abcgP~(Or dpb)(O~cbc) 

1 
(17) 

This definition reduces to the usual definition of the field strength tensor if 
one considers the unitary gauge where the scalar field is gauge rotated so 
that it points in only one direction in the internal SO(3) space. This will be 
discussed more later. To see how a monopole emerges from this generalized 
field strength tensor, the asymptotic values of the ansatz of equation (13) are 
inserted into equation (17). As r --+ ~, K(r) ---) 0 and H(r) ---) (g~/~/-~)r, 
which means 

W a ---> EaijXJ/gr 2 + ~(r -z) 

diga(r) ~ xav[r  + G(r -2) (18) 

The asymptotic configuration of the scalar field is called the "hedgehog" 
solution because of the peculiar way in which the Higgs field approaches its 
vacuum value v at spatial infinity. Instead of pointing in a fixed direction in 
isospin space for all points in configuration space (i.e., ~a(r) = v~ a3 = v[0, 
0, 1]), it points in an isospin direction that coincides with the radial spatial 
direction. This links the internal (isospin) space with the external (configura- 
tion) space. Inserting the asymptotic fields of equation (18) into the general- 
ized field strength tensor of equation (17) yields 

1 r i 
B i = - -~  eijk F jk  ~ g r  3 

Ei = F ;~ = 0 (19) 

So as r ~ ~ the fields rapidly approach those of a magnetic Coulomb field 
and zero electric field. For the magnetic monopole one sets the non-Abelian 
gauge coupling equal to the usual electric U(1) coupling (g = e). The magnetic 
charge implied by the far fields of equation (19) is then 4-rr/e. 

4. ELECTRICALLY CHARGED SOLITON 

By setting A~ = W~cba/I dO L, one identifies the U(1) symmetry which 
remains after symmetry breaking with the usual "electric" Abelian gauge 
symmetry. However, using the dual four-vector potential formalism, one 
could just as easily set C~ -- W~d~a/I ~1, so that the remaining U(1) symmetry 
now corresponds to the "magnetic" Abelian gauge symmetry. The only change 
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that this entails is that the SO(3) gauge fields W~ would have to be pseudo 
quantities under parity, since C~ is a pseudo four-vector. (One could also 
consider having W~ be regular under parity and let ~ be a pseudoscalar. 
This also makes C, a pseudo four-vector). This switching of the two four- 
vector potentials A~ and C~ can be seen as a dual rotation, with 0 set to 
�9 r/2 in equation (9). This gives A~ ~ C~, and from equation (5) it also 
changes the "electric" field strength tensor into the "magnetic" field strength 
tensor (F~, ~ Gr In this way equation (17) becomes 

1 
G~.  = O ~ C~ - O.C~ eabcqba(0~b)(0~ C) gl| 

1 = . o w ;  
tu'l 

(20) 

As with the expression for the "electric" field strength tensor, G ~  is gauge 
invariant. Inserting the asymptotic values of the non-Abelian gauge fields 
and of the scalar fields (which now define the magnetic gauge potential C~) 
from (18) into equation (20), one finds that the far fields of this soliton are 

Bi = G i~ = 0 

r i 
1 eiikGj ~ --~ _ _ _  (21) 

Ei = ~ gr3 

where the expanded definitions of the E and B fields from equation (7) have 
been used. Requiring that the charge of the E field in equation (21) have the 
magnitude of the charge of an electron (or proton) leads to the requirement 
that g = 4"rr/e (where e is the magnitude of the electron's charge). This means 
that the original SO(3) coupling g must be large. In the case of the magnetic 
soliton the non-Abelian gauge coupling was taken to be g = e, since there 
one wanted to embed the electric U(1) symmetry into the SO(3) theory. In 
the present case, the coupling of the magnetic U(1) symmetry which is 
embedded in the SO(3) theory is fixed by the condition that the electric 
charge of the soliton be that of observed particles. This is in accord with 
the Montonen-Olive conjecture that the weak- and strong-coupling regimes 
should exchange roles in the dual theory (i.e., in the 't Hooft-Polyakov case 
one had a weak electric gauge charge and ended up with an enormous 
topological magnetic charge. Here we start with a large magnetic gauge 
charge and end up with a small topological electric charge). 

Up to this point all that has been accomplished can be viewed as simply 
a renaming of magnetic and electric quantities. However, there is a physicai 
distinction between the two cases (i.e., wa~cba/I ~ J equaling either A~ or C~). 
The difference lies in the classical masses of the two types of solitons. We 
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will find that the mass of the electrically charged soliton is ~ 10 -4 times the 
mass of the magnetically charged soliton of 't Hooft and Polyakov. By 
equating the energy in the fields with the mass of the soliton one finds from 
equation (16), that the magnetically charged soliton (which has g = e) has 
a mass of 

4,rr M -{ k'~ Mm = E = - ~  wfl~ ) ~  137Mw (22) 

since numerically f(h/e 2) is ~(1). In contrast the electric soliton (which has 
g = 47r/e) has a mass of 

e 2 1 
Me = E = ~ Mwf(he 2) ~ ~ Mw (23) 

The functionf(he 2) is ~(1), since the energy of the fields [equation (15)] is 
invariant under the duality transformation that turns the magnetic soliton into 
an electric soliton. One might worry that the argument of f is different in the 
two cases. It can be shown that f(0) --- 1 (Prasad and Sommerfield, 1975) 
and increases monotonically with the argument. Thus for a given k the 
argument of the electric case is always closer to zero and the value of the 
function f is closer to 1. From equations (22), (23) it is seen that the mass 
of the electric soliton is over 104 times smaller than that of the magnetic 
soliton. If the mass of the gauge boson Mw is taken to be of the order of the 
electroweak gauge bosons [i.e., G(100) GeV], then such an electrically 
charged, spin-zero particle should have already been detected. This would 
seem to imply that if such electric solitons exist, the non-Abelian gauge 
group into which they are embedded must undergo symmetry breaking in 
such a way that the masses of the gauge bosons are at least several orders 
of magnitude greater than the masses of the electroweak gauge bosons. Even 
if Mw were in the range of 50 TeV it might be possible to see such an electric 
soliton at some reasonably extrapolated future accelerator. The observation 
of such an electrically charged soliton would precede the observation of the 
massive gauge bosons of the theory. In this way the soliton would provide 
a window on the higher energy scale of the spontaneously broken non-Abelian 
gauge group. An alternative possibility would be to use the spin from isospin 
mechanism (Jackiw and Rebbi, 1976; Hasenfratz and 't Hooft, 1976) and 
form bound states out of particles with various combinations of topological 
electric charge and gauge magnetic charge. These bound states would carry 
a spin of 1/2, obey Fermi-Dirac statistics (Goldhaber, 1976), and be in the 
mass range of the baryons. In this paper, however, we simply want to show 
the theoretical possibility of obtaining a topological electric charge from a 
non-Abelian gauge theory, since the SO(3) group which is used here is 
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apparently not a theory picked by nature. We will leave for a future work 
the task of building a more realistic model through the use of a larger non- 
Abelian symmetry. 

In standard electrodynamics only the B field can be written as a curl. 
Including magnetic charge in electrodynamics as a gauge charge by introduc- 
ing a second four-vector potential then requires that part of the E field be 
given by the curl of this second potential. The crucial element in constructing 
a finite-energy, stable field configuration with either a Coulomb electric or 
magnetic far field is being able to write that field as the curl of some vector 
potential. A general argument can be given (Cheng and Li, 1984) that shows 
this. In order for the energy of the soliton ]equation (15)] to be finite, the 
covariant derivative of the scalar field must satisfy the following boundary 
condition as r --~ ~: 

g~ W~qb ---) G(r -2) (24) D f l p a  : op@a + abc b c 

In order for there to be a Coulomb far field (either electric or magnetic), the 
gauge fields W~ must go like r-1 as r ---> ~. In addition, the magnitude of 
the scalar field must approach a constant (its VEV) as r ---> ~. Then both of 
the two separate terms in equation (24) need not approach zero like r -z, 
since some cancellation can occur between the terms such that De@ a ---> 0 
like r -2. This is what happens with the ansatz (13). For time-independent 
fields the time component of the first term of equation (24) is zero, so no 
cancellation can occur between the two terms. Therefore W~ must go to zero 
faster than r -1 and does not give rise to a Coulomb far field. When the U(1) 
gauge field is identified with W~Cba/I qbl, as in (17) or (20), this implies that 
the time component of the U(1) gauge field also will not yield a Coulomb 
far field. In standard electrodynamics, where the E field is defined only by 
F i~ a Coulomb field is only possible if A0 :/: 0 (in fact if A0 = 0 and only 
static solutions are considered then E = 0). In the two-potential theory, 
however, the E field also has a part that is the curl of a vector potential (i.e., 
E i = l]2f.iJkGj~). A Coulomb far field is then possible if the spatial components 
of the non-Abelian gauge field [and therefore the spatial components of the 
embedded U(1) gauge field] go to zero like r -1, as is the case for the 
ansatz (13). 

Looking in detail at where the Coulomb far fields come from, it appears 
as if they are due entirely to the scalar fields. Inserting the asymptotic field 
conditions (18) into the generalized field strength tensors (17) or (20), it is 
found that the Coulomb fields come only from the last term of the generalized 
field strength tensors, which involve only the scalar fields. This makes it 
appear that whether the soliton has a magnetic charge or an electric charge 
is completely independent of the type of U(1) gauge field (either A~ or C~) 
that is embedded into the non-Abelian gauge theory. This is not the case. It 
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has been shown (Arafune e t  al. ,  1975) that by performing a gauge transforma- 
tion to the unitary or Abelian gauge, it is possible to rotate the scalar field 
into the more common asymptotic vacuum configuration 

dpa(r) -"-> V~ a3 : V(0, 0, 1) (25) 

Using this asymptotic scalar field in the generalized field strength tensors 
gives 

G ~  = a~ W 3 - O~W 3 

W 3 = C~ (26) 

or 

W 3 = A~ (27) 

where the U(1) gauge bosons are now associated exclusively with the third 
isospin component S0(3) gauge boson. Since the expression for the general- 
ized field strength tensors is gauge invariant, one still gets a Coulomb far 
field. This comes about even though the field strength tensors (26) and (27) 
are of the form that usually preclude the existence of a Coulomb field coming 
from the spatial part of the tensor, because the gauge transformation that 
takes the "hedgehog" gauge to the Abelian gauge is singular along the positive 
z-axis. The singularity in the gauge transformation gives rise to a similar 
singularity in W 3. In this way a connection between the 't Hooft-Polyakov 
monopole and the Dirac monopole can be seen. 

5. CONCLUSIONS 

In this paper it has been shown that it is possible to construct a finite- 
energy, topologically stable soliton with electric charge. This is accomplished 
through the application of the 't Hooft-Polyakov monopole solution to the 
two-potential theory of electric and magnetic charge, where the two types of 
charges are treated as gauge charges through the introduction of two four- 
vector potentials. In the case of the magnetically charged soliton one starts 
with some non-Abelian gauge theory which is coupled to a scalar field that 
breaks the gauge symmetry. By embedding the electric U(1) symmetry in 
the non-Abelian theory through the introduction of a generalized field strength 
tensor and taking the scalar field to go to the "hedgehog" solution as r ---) 
o% it is found that a stable, finite-energy, magnetically charged soliton emerges. 
The gauge coupling g of the non-Abelian group is required to satisfy g = e 
in order that the embedded U(1) symmetry may be identified with the usual 
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electric U(1) gauge field. This leads to both the magnetic charge of the 
monopole (=4w/e) and the mass of the monopole (--4w/e 2) being extremely 
large. Thus by starting with an electric gauge charge and using the 't Hooft-  
Polyakov ansatz, one ends up with a topological magnetic charge. 

Using the dual symmetry between electric and magnetic quantities, we 
have shown that this construction can be reversed--i.e., start with a magnetic 
gauge charge and using the 't Hooft-Polyakov ansatz, end up with a topologi- 
cal electric charge. This is made possible by treating magnetic charge, like 
electric charge, as a gauge symmetry by introducing the pseudo four-vector 
potential Cr Using the dual transformation in terms of the potentials to 
"rotate" the electric potential A~ into the magnetic potential Cr it is found 
that the magnetic soliton is transformed into an electric soliton. Requiring 
that the electric charge of this soliton be equal in magnitude to the charge 
of other electrically charged particles (e.g., electrons, protons), we found that 
the original non-Abelian gauge coupling must satisfy g = 4'rr/e. This made 
the mass of the electrically charged soliton several orders of magnitude lighter 
than its magnetic counterpart [Me ~ (1 /137)Mw compared to Mm ~ 137 Mw]. 
This construction of a topological electric charge with the properties found 
in this paper is an explicit realization of the Montonen-Olive conjecture. 
Taking Mw to be of the order of the electroweak gauge boson masses, such 
an electrically charged, spin-zero particle should have been observed. This 
might be taken to imply that such electric solitons are only of theoretical 
interest. However, by using the spin from isospin mechanism (Jackiw and 
Rebbi, 1976; Hasenfrantz and 't Hooft, 1976), it may be possible to construct 
bound states of topological electric charge and gauge magnetic charge which 
behave like spin-l/2 fermions (Goldhaber, 1976) and have masses roughly 
in the range of the baryon masses. Here, however, our goal was simply to 
show that it is possible to get a topological electric charge from a non- 
Abelian gauge theory, since the SO(3) group is currently not thought to play 
a fundamental role in particle physics. 
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